Eugene Ferapontov
Department of Mathematical Sciences, Loughborough University, UK
E.V.Ferapontov@lboro.ac.uk

Collaboration:
A Moro, V Novikov

SOLITONS, COLLAPSES AND TURBULENCE: VLADIMIR ZAKHAROV’s 70 BIRTHDAY
Chernogolovka, August 2-7, 2009
KP equation

\[
(u_t - uu_x - u_{xxx})_x = u_{yy}
\]

Perturbative symmetry approach

\[
(u_t - \varepsilon uu_x - u_{xxx})_x = u_{yy}
\]

Dispersive deformation

\[
(u_t - uu_x - \varepsilon^2 u_{xxx})_x = u_{yy}
\]

Program of classification of (2+1)D integrable systems:

- Classify (2+1)D dispersionless systems which may (potentially) arise as dispersionless limits of integrable soliton equations (method of hydrodynamic reductions)
- Understand how to add dispersive corrections (deformation of hydrodynamic reductions)
Plan:

- The method of hydrodynamic reductions. Example of dKP
- Classification of (2+1)D dispersionless integrable systems
 - Systems of hydrodynamic type
 - Hydrodynamic chains
 - Equations of the dispersionless Hirota type
 - Second order quasilinear PDEs
- Dispersive deformations of dispersionless integrable systems
- Classification of third order (2+1)D soliton equations with ‘simplest’ nonlocalities
The method of hydrodynamic reductions

Applies to quasilinear equations

\[A(u)u_x + B(u)u_y + C(u)u_t = 0 \]

Consists of seeking N-phase solutions

\[u = u(R^1, ..., R^N) \]

The phases \(R^i(x, y, t) \) are required to satisfy a pair of commuting equations

\[R_{xy}^i = \mu^i(R) R_x^i, \quad R_t^i = \lambda^i(R) R_x^i \]

Commutativity conditions:

\[\frac{\partial_j \mu^i}{\mu^j - \mu^i} = \frac{\partial_j \lambda^i}{\lambda^j - \lambda^i} \]

Definition

A quasilinear system is said to be integrable if, for any number of phases N, it possesses infinitely many N-phase solutions parametrized by 2N arbitrary functions of one variable.
Example of dKP

\[(u_t - uu_x)_x = u_{yy}\]

First order (hydrodynamic) form:

\[u_t - uu_x = w_y, \quad u_y = w_x\]

\[N\text{-phase solutions: } u = u(R^1, ..., R^N), \quad w = w(R^1, ..., R^N)\text{ where}\]

\[R^i_y = \mu^i(R)R^i_x, \quad R^i_t = \lambda^i(R)R^i_x\]

Then

\[\partial_i w = \mu^i \partial_i u, \quad \lambda^i = u + (\mu^i)^2\]

Equations for \(u(R)\) and \(\mu^i(R)\) (Gibbons-Tsarev system):

\[\partial_j \mu^i = \frac{\partial_j u}{\mu^j - \mu^i}, \quad \partial_i \partial_j u = 2 \frac{\partial_i u \partial_j u}{(\mu^j - \mu^i)^2}\]

In involution! General solution depends on \(N\) arbitrary functions of one variable.
Generalized dKP

\[(u_t - f(u)u_x)_x = u_{yy}\]

First order (hydrodynamic) form:

\[u_t - f(u)u_x = w_y, \quad u_y = w_x\]

\(N\)-phase solutions: \(u = u(R^1, \ldots, R^N), \ w = w(R^1, \ldots, R^N)\) where

\[R_{iy}^i = \mu^i(R)R_{x}^i, \quad R_{t}^i = \lambda^i(R)R_{x}^i\]

Then

\[\partial_i w = \mu^i \partial_i u, \quad \lambda^i = f(u) + (\mu^i)^2\]

Equations for \(u(R)\) and \(\mu^i(R)\) (generalized Gibbons-Tsarev system):

\[\partial_j \mu^i = f'(u) \frac{\partial_j u}{\mu^j - \mu^i}, \quad \partial_i \partial_j u = 2f'(u) \frac{\partial_i u \partial_j u}{(\mu^j - \mu^i)^2}\]

Involutivity \(\rightarrow f''' = 0\)
Systems of hydrodynamic type in (2+1)D

\[u_t + A(u)u_x + B(u)u_y = 0 \]

Nijenhuis tensor

\[N_{jk}^i = V_j^p \partial_u^p V_k^i - V_k^p \partial_u^p V_j^i - V_p^i (\partial_u^j V_k^p - \partial_u^k V_j^p) \]

Haantjes tensor

\[H_{jk}^i = N_{pr}^i V_j^p V_k^r - N_{jr}^p V_k^p V_j^r - N_{rk}^p V_j^r V_k^p + N_{jk}^p V_r^i V_p^r \]

General case: Integrability \implies H(V) = 0 where \(V = (A + kE)^{-1}(B + lE) \).

Hamiltonian case: Integrability \iff H(V) = 0.
Hydrodynamic chains

\[u_t + V(u)u_x = 0 \]

Haantjes tensor \(H(V) \) well-defined!

Conservative chains

\[u_1^t = f(u^1, u^2)_x, \quad u_2^t = g(u^1, u^2, u^3)_x, \quad u_3^t = h(u^1, u^2, u^3, u^4)_x, \ldots \]

Hamiltonian chains

\[u_t = \left(B \frac{d}{dx} + \frac{d}{dx} B^t \right) \frac{\partial h}{\partial u}, \quad h(u^1, u^2, u^3) \]

Generic case: \(h = (u^3 + P(u^1, u^2))^{1/3} \) where \(P \) is a cubic polynomial.
Equations of the dispersionless Hirota type

\[F(u_{xx}, u_{xy}, u_{yy}, u_{xt}, u_{yt}, u_{tt}) = 0 \]

\[e^{u_{xx}} + e^{u_{yy}} = e^{u_{tt}} \]

\[u_{tt} = \frac{u_{xy}}{u_{xt}} + \frac{1}{6} \eta(u_{xx})u_{xt}^2 \]

where \(\eta \) solves the Chazy equation.

21-dimensional moduli space, equivalence group \(Sp(6, R) \)

Geometry: hypersurfaces in the Lagrangian Grassmannian
Second order quasilinear PDEs

\[f_{11}u_{xx} + f_{22}u_{yy} + f_{33}u_{tt} + 2f_{12}u_{xy} + 2f_{13}u_{xt} + 2f_{23}u_{yt} = 0 \]

\(f_{ij} \) depend on the first order derivatives \(u_x, u_y, u_t \) only.

\[u_{xx} + u_{yy} - e^{u_t}u_{tt} = 0 \]

\[\alpha \frac{\varphi'(u_x) - \varphi'(u_y)}{\varphi(u_x)\varphi(u_y)} u_{xy} + \beta \frac{\varphi'(u_t) - \varphi'(u_x)}{\varphi(u_x)\varphi(u_t)} u_{xt} + \gamma \frac{\varphi'(u_y) - \varphi'(u_t)}{\varphi(u_y)\varphi(u_t)} u_{yt} = 0 \]

20-dimensional moduli space, equivalence group \(SL(4, R) \)

Geometry: conformal structures in projective space
Dispersive deformations of dispersionless integrable systems

\[
(u_t - uu_x - \varepsilon^2 u_{xxx})_x = u_{yy}
\]

Look for deformed N-phase solutions in the form

\[
u = u(R^1, ..., R^N) + \varepsilon^2(\ldots) + \varepsilon^4(\ldots) + \ldots
\]

where

\[
R^i_y = \mu^i(R) R^i_x + \varepsilon^2(\ldots) + \varepsilon^4(\ldots) + \ldots
\]

\[
R^i_t = \lambda^i(R) R^i_x + \varepsilon^2(\ldots) + \varepsilon^4(\ldots) + \ldots
\]

Here (\ldots) are required to be polynomial and homogeneous in the derivatives of \(R^i \). Recall that \(\lambda^i = u + (\mu^i)^2 \), and \(\mu^i, u \) satisfy the Gibbons-Tsarev system.
Deformations of one-phase reductions of dKP

\[(u_t - uu_x - \epsilon^2 u_{xxx})_x = u_{yy} \]

Deformed one-phase reductions (modulo the Miura group can assume \(u = R \)):

\[R_y = \mu R_x \]
\[+ \epsilon^2 \left(\mu' R_{xx} + \frac{1}{2}(\mu'' - (\mu')^3)R_x^2 \right)_x + O(\epsilon^4) \]

\[R_t = (\mu^2 + R)R_x \]
\[+ \epsilon^2 \left((2\mu\mu' + 1)R_{xx} + (\mu\mu'' - \mu(\mu')^3 + (\mu')^2/2)R_x^2 \right)_x + O(\epsilon^4) \]

Conjecture

For any soliton system in (2+1)D, all hydrodynamic reductions of its dispersionless limit can be deformed into reductions of the dispersive counterpart (linear non-degeneracy of the dispersionless limit is required).
Generalized KP equation

\[u_t - uu_x + \varepsilon (A_1 u_{xx} + A_2 u_x^2) + \varepsilon^2 (B_1 u_{xxx} + B_2 u_x u_{xx} + B_3 u_x^3) = w_y \]

\[w_x = u_y \]

Require that all one-phase reductions can be deformed as

\[u = R, \quad w = w(R) + \varepsilon^2 (\ldots) + \varepsilon^4 (\ldots) + \ldots \]

where

\[R_y = \mu R_x + \varepsilon^2 (\ldots) + \varepsilon^4 (\ldots) + \ldots \]

\[R_t = (\mu^2 + R) R_x + \varepsilon^2 (\ldots) + \varepsilon^4 (\ldots) + \ldots \]

\[w' = \mu. \text{ This gives } A_1 = A_2 = B_2 = B_3 = 0, \quad B_1=\text{const}, \quad \implies \quad \text{KP} \]
Classification result: scalar third order (2+1)D soliton equations with simplest nonlocalities

\[u_t = \varphi u_x + \psi u_y + \eta w_y + \epsilon(\ldots) + \epsilon^2(\ldots), \quad w_x = u_y \]

here \(\varphi, \psi, \eta \) are functions of \(u \) and \(w \), and \((\ldots)\) denote terms which are polynomial in the derivatives of \(u \) and \(w \) with respect to \(x \) and \(y \) of orders 2 and 3, respectively. Here \(w = D_x^{-1}D_y u \) is the nonlocality, no other non-local variables are allowed.

- Classify integrable dispersionless systems of the form

\[u_t = \varphi u_x + \psi u_y + \eta w_y, \quad w_x = u_y \]

- Add dispersive corrections which inherit all hydrodynamic reductions (sufficient to consider 1-component reductions only)
Known examples

KP

\[u_t = uu_x + wy + \epsilon^2 u_{xxx} \]

mKP

\[u_t = (w - \frac{u^2}{2})u_x + wy + \epsilon^2 u_{xxx} \]

Gardner

\[u_t = (\beta w - \frac{\beta^2}{2}u^2 + \delta u)u_x + wy + \epsilon^2 u_{xxx} \]

VN

\[u_t = (uw)_y + \epsilon^2 u_{yyy} \]

mVN

\[u_t = (uw)_y + \epsilon^2 \left(u_{yy} - \frac{3}{4} \frac{u_y^2}{u} \right)_y \]

HarryDym

\[u_t = -2wu_y + uw_y \frac{\epsilon^2}{u} \left(\frac{1}{u} \right)_{xxx} \]
Classification of integrable dispersionless limits

\[
\begin{align*}
\phi_{uu} &= -\frac{\phi_w^2 + \psi_u \phi_w - 2\psi_w \phi_u}{\eta}, \\
\phi_{uw} &= \frac{\eta_w \phi_u}{\eta}, \\
\phi_{ww} &= \frac{\eta_w \phi_w}{\eta}, \\
\psi_{uu} &= -\frac{\psi_w \phi_w + \psi_u \psi_w - 2\phi_w \eta_u + 2\eta_w \phi_u}{\eta}, \\
\psi_{uw} &= \frac{\eta_w \psi_u}{\eta}, \\
\psi_{ww} &= \frac{\eta_w \psi_w}{\eta}, \\
\eta_{uu} &= -\frac{\eta_w (\phi_w - \psi_u)}{\eta}, \\
\eta_{uw} &= \frac{\eta_w \eta_u}{\eta}, \\
\eta_{ww} &= \frac{\eta_w^2}{\eta},
\end{align*}
\]

In involution, straightforward to solve: \(\eta = 1, \eta = u, \eta = e^w h(u) \)

Conjecture

For any \(\phi, \psi, \eta \) one can reconstruct (non-uniquely) dispersive corrections which inherit all hydrodynamic reductions. Infinite series in \(\epsilon \) are required in general.
New examples: 1

\[u_t = (\beta w + \beta^2 u^2)u_x - 3\beta uu_y + w_y + \epsilon^2[B^3(u) - \beta B^2(u)u_x], \quad w_x = w_y, \]

\[B = \beta uD_x - D_y. \]

Lax pair

\[\psi_{xy} = \beta uu\psi_{xx} + \frac{1}{3\epsilon^2}\psi, \]

\[\psi_t = \beta^3 \epsilon^2 u^3 \psi_{xxx} - \epsilon^2 \psi_{yyy} + 3\beta^2 \epsilon^2 uu_y \psi_{xx} + \beta w \psi_x. \]
New examples: 2

\[u_t = \frac{4}{27} \gamma^2 u^3 u_x + (w + \gamma u^2) u_y + uw_y + \varepsilon^2 [B^3(u) - \frac{1}{3} \gamma u_x B^2(u)], \quad w_x = u_y, \]

\[B = \frac{1}{3} \gamma u D_x + D_y. \]

Lax pair

\[\psi_{xy} = -\frac{\gamma}{3} u \psi_{xx} - \frac{1}{3\varepsilon^2} u \psi, \]

\[\psi_t = \frac{\varepsilon^2 \gamma^3}{27} u^3 \psi_{xxx} + \varepsilon^2 \psi_{yyy} - \frac{\varepsilon^2 \gamma^2}{3} uu_y \psi_{xx} + \frac{\gamma^2}{27} u^3 \psi_x + w \psi_y - \frac{\gamma}{3} uu_y \psi \]
New examples: 3

\[u_t = \frac{\delta}{u^3} u_x - 2wu_y + uw_y \frac{\epsilon^2}{u} \left(\frac{1}{u} \right)_{xxx}, \quad w_x = u_y, \]

\(\delta = 0 \) gives the Harry Dym equation.

Lax pair \(L_t = [A, L] \),

\[L = \frac{\epsilon^2}{u^2} D_x^2 + \frac{\epsilon}{\sqrt{3}} D_y + \frac{\delta^2}{4u^2}, \]

\[A = \frac{4\epsilon^2}{u^3} D_x^3 + \left(-\frac{6\epsilon^2 u_x}{u^4} + \frac{2\sqrt{3}\epsilon w}{u^2} \right) D_x^2 + \frac{\delta}{u^3} D_x + \left(-\frac{3\delta u_x}{2u^4} + \frac{\sqrt{3}\delta w}{2\epsilon u^2} \right) \]
Comparison of 1+1 and 2+1 deformation schemes

1+1 case:
\[u_t = A(u)u_x + \varepsilon^2(\ldots) + \ldots \]
Dispersionless integrable systems form an infinite dimensional moduli space;
Terms at ε^2 contain extra functional freedom (central invariants).

2+1 case:
\[u_t = A(u)u_x + B(u)u_y + \varepsilon^2(\ldots) + \ldots \]
Dispersionless integrable systems form finite dimensional moduli spaces;
Terms at ε^2 contain no functional freedom.

There is a hope to obtain explicit formulae in 2+1D