On the relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields

1. Introduction: relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf-Cole transformation

2. Relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields:
 (a) General scheme of transformations
 (b) Derivation of $GL(N)$ SDYM
 (c) $GL(N)$ SDYM and differential reduction
 (d) Frobenius reduction and associated higher dimensional systems of nonlinear PDEs
 (e) Solutions
1. Introduction
2. Relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields
(a) General scheme of transformations

(1+1) dimensional matrix PDE integrable by the method of characteristics (Ch-integrable PDE):

\[W_{tn} + W_{zn} W = 0, \quad n = 1, 2. \]

Simple example of the scalar nonlinear PDE associated with commuting vector fields.

\[u_{z_1 t_2} - u_{z_2 t_1} + u_{z_2} u_{z_1 x} - u_{z_1} u_{z_2 x} = 0, \]

Lax pair:

\[\psi_{t_i}(\lambda; \vec{x}) + \lambda \psi_{z_i}(\lambda; \vec{x}) + u_{z_i}(\vec{x}) \psi_x(\lambda; \vec{x}) = 0, \quad i = 1, 2 \]

\[\vec{x} = (z_1, z_2, t_1, t_2, x) \]
The chain of transformations from the (1+1)-dimensional PDE integrable by the method of characteristics to the nonlinear PDE associated with commuting vector fields; $N^{S_2} = 2n_0M$
2(b). Derivation of $GL(N)$ SDYM

The linear system

\[\chi \Lambda = W \chi, \]
\[\chi_{t_n} + \chi_{z_n} \Lambda = 0, \quad n = 1, 2, \ldots. \]

\(\chi\) and \(W\) are \(2Mn_0N_0 \times 2Mn_0N_0\) matrix functions and \(\Lambda\) is a diagonal \(2Mn_0(N_0 + 1) \times 2Mn_0N_0\) matrix function. Parameters \(M, n_0\) and \(N_0\) are arbitrary integers.

Compatibility condition:

\[\Lambda_{t_n} + \Lambda_{z_n} \Lambda = 0, \]
\[W_{t_n} + W_{z_n} W = 0. \]
Frobenius structure of w:

$$W = \begin{pmatrix}
W^{(1)} & W^{(2)} & \cdots & W^{(N_0-1)} & W^{(N_0)} \\
I_{2Mn_0} & 0_{2Mn_0} & \cdots & 0_{2Mn_0} & 0_{2Mn_0} \\
0_{2Mn_0} & I_{2Mn_0} & \cdots & 0_{2Mn_0} & 0_{2Mn_0} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0_{2Mn_0} & 0_{2Mn_0} & \cdots & I_{2Mn_0} & 0_{2Mn_0}
\end{pmatrix},$$

Block-diagonal form of Λ:

$$\Lambda = \text{diag}(\Lambda^{(1)}, \ldots, \Lambda^{(2N_0)}),$$

and

$$\chi = \begin{pmatrix}
\chi^{(1)} & \cdots & \chi^{(N_0)} \\
\chi^{(1)}(\Lambda^{(1)})^{-1} & \cdots & \chi^{(N_0)}(\Lambda^{(N_0)})^{-1} \\
\cdots & \cdots & \cdots \\
\chi^{(1)}(\Lambda^{(1)})^{-N_0+1} & \cdots & \chi^{(N_0)}(\Lambda^{(N_0)})^{-N_0+1}
\end{pmatrix},$$

where $W^{(i)}$ and $\chi^{(i)}$ are $2Mn_0 \times 2Mn_0$ matrix functions, $\Lambda^{(j)}$ are $2Mn_0 \times 2Mn_0$ diagonal matrices.
Discrete chain:

\[W_{tn} + W_{zn} W = 0 \quad \Rightarrow \quad W^{(i)}_{tn} + W^{(1)}_{zn} W^{(i)} + W^{(i+1)} = 0, \]

\[i = 1, \ldots, N_0, \quad W^{(N_0+1)} = 0, \quad n = 1, 2. \]

Let \(i = 1 \) and eliminate \(W^{(2)} \) to obtain self-dual Yang-Mills equation:

\[W^{(1)}_{z_1 t_2} - W^{(1)}_{z_2 t_1} + W^{(1)}_{z_2} W^{(1)}_{z_1} - W^{(1)}_{z_1} W^{(1)}_{z_2} = 0, \]
2(c) $GL(N)$ SDYM and differential reduction

Let
\[
\chi^{(j)} = \begin{pmatrix}
\Psi^{(2j-1)} & \Psi^{(2j)} \\
\Psi_x^{(2j-1)} & \Psi_x^{(2j)}
\end{pmatrix}, \quad \Lambda^{(j)} = \text{diag}(\tilde{\Lambda}^{(2j-1)}, \tilde{\Lambda}^{(2j)}), \quad j = 1, \ldots, N_0,
\]

where $\Psi^{(m)}$ are $Mn_0 \times Mn_0$ matrix functions:
\[
\Psi^{(m)}_{xx} = a\Psi^{(m)}\tilde{\Lambda}^{(m)} + \nu\Psi^{(m)}_{x} + \mu\Psi^{(m)}, \quad m = 1, \ldots, 2N_0,
\]

Then the linear eq. for Ψ yields
\[
\Psi^{(j)}\Lambda^{(j)} = \sum_{i=0}^{N_0} W^{(i)}\Psi^{(j)}(\Lambda^{(j)})^{-i}, \quad j = 0, 1, \ldots, N_0,
\]

where a, ν and μ are $n_0M \times n_0M$ diagonal constant matrix parameters and
\[
W^{(i)} = \begin{pmatrix}
w^{(i)} & v^{(i)} \\
w_x^{(i)} + v^{(i)}\mu + v^{(i+1)}a + v^{(0)}aw^{(i)} & v_x^{(i)} + v^{(i)}\nu + w^{(i)} + v^{(0)}av^{(i)}
\end{pmatrix}.
\]
The first block-row reads:

\[\Psi \Lambda = \sum_{i=1}^{N_0} \left(v^{(i)} \Psi_x + w^{(i)} \Psi \right) \Lambda^{-i+1}. \]

\(\Psi \) is a solution of the system

\[\Psi_t + \Psi_z \Lambda = 0, \]
\[\mathcal{E}^{(0)} := \Psi_{xx} = a \Psi \Lambda + \nu \Psi_x + \mu \Psi, \]

where

\[\Psi = (\Psi^{(1)}, \ldots, \Psi^{(2N_0)}), \]
\[\Lambda = \text{diag}(\tilde{\Lambda}^{(1)}, \ldots, \tilde{\Lambda}^{(2N_0)}), \]

\(v^{(i)}, w^{(i)}, \Psi^{(i)} \) and \(\tilde{\Lambda}^{(j)} \) are \(Mn_0 \times Mn_0 \) matrix functions, \(a, \nu \) and \(\mu \) are \(Mn_0 \times Mn_0 \) diagonal constant matrices.
Compatibility conditions:

$$\Lambda_t + \Lambda_z \Lambda = 0, \quad \Lambda_x = 0$$

Evolution part of the nonlinear system

$$E_n^{(1i)} := v_{tn}^{(i)} + v_{zn}^{(1)}(w^{(i)} + v_x^{(i)} + v^{(i)} \nu + v^{(1)} a v^{(i)}) + w_{zn}^{(1)} v^{(i)} + v_{zn}^{(i+1)} = 0,$$

$$v^{(N_0+1)} = 0, \quad i = 1, \ldots, N_0,$$

$$E_n^{(0i)} := w_{tn}^{(i)} + v_{zn}^{(1)}(w_x^{(i)} + v^{(i)} \mu + v^{(1)} a w^{(i)} + v^{(i+1)} a) + w_{zn}^{(1)} w^{(i)} + w_{zn}^{(i+1)} = 0,$$

$$w^{(N_0+1)} = 0, \quad i = 1, \ldots, N_0,$$

Non-evolution part of the nonlinear system:

$$\tilde{E}^{(1i)} := v_{xx}^{(i)} + [w^{(i)}, \nu] + 2w_x^{(i)} + 2v_x^{(i)} \nu - \nu v_x^{(i)} + [v^{(i)}, \mu] + [v^{(i)}, \nu] \nu + [v^{(1)}, \nu] a v^{(i)} + 2v_x^{(1)} a v^{(i)} + [w^{(1)}, a] v^{(i)} + [v^{(1)}, a] (w^{(i)} + v_x^{(i)} + v^{(i)} \nu + v^{(1)} a v^{(i)}) + [v^{(i+1)}, a] = 0,$$

$$\tilde{E}^{(0i)} := w_{xx}^{(i)} + [w^{(i)}, \mu] + [w^{(1)}, a] w^{(i)} + 2v_x^{(i)} \mu + [v^{(i)}, \nu] \mu + [v^{(1)}, \nu] a w^{(i)} + 2v_x^{(1)} a w^{(i)} - \nu w_x^{(i)} + [v^{(1)}, a] (w_x^{(i)} + v^{(i)} \mu + v^{(1)} a w^{(i)} + v^{(i+1)} a) + [w^{(i+1)}, a] + 2v_x^{(i+1)} a + [v^{(i+1)}, \nu] a = 0.$$
The complete system of PDEs for $v^{(i)}$ and $w^{(i)}$, $i = 1, 2$ corresponds to $i = 0$:

$$E_{n}^{(11)} := v_{tn}^{(1)} + v_{zn}^{(1)}(w^{(1)} + v_{x}^{(1)} + v^{(1)}\nu + v^{(1)}aw^{(1)}) + w_{zn}^{(1)}v^{(1)} + v_{zn}^{(2)} = 0,$$

$$E_{n}^{(01)} := w_{tn}^{(1)} + v_{zn}^{(1)}(w_{x}^{(1)} + v^{(1)}\mu + v^{(1)}aw^{(1)} + v^{(2)}a) + w_{zn}^{(1)}w^{(1)} + w_{zn}^{(2)} = 0,$$

$$\tilde{E}_{n}^{(11)} := v_{xx}^{(1)} + [w^{(1)}, \nu] + 2w_{x}^{(1)} + 2v_{x}^{(1)}\nu - \nu v_{x}^{(1)} + [v^{(1)}, \mu] + [v^{(1)}, \nu](\nu + av^{(1)}) + 2v_{x}^{(1)}aw^{(1)} + [w^{(1)}, a]v^{(1)} + [v^{(1)}, a](w^{(1)} + v_{x}^{(1)} + v^{(1)}\nu + v^{(1)}aw^{(1)}) + [v^{(2)}, a] = 0,$$

$$\tilde{E}_{n}^{(01)} := w_{xx}^{(1)} + [w^{(1)}, \mu] + [w^{(1)}, a]w^{(1)} + 2v_{x}^{(1)}\mu + [v^{(1)}, \nu]\mu + [v^{(1)}, \nu]aw^{(1)} + 2v_{x}^{(1)}aw^{(1)} - \nu w_{x}^{(1)} + [v^{(1)}, a](w_{x}^{(1)} + v^{(1)}\mu + v^{(1)}aw^{(1)} + v^{(2)}a) + [w^{(2)}, a] + 2v_{x}^{(2)}a + [v^{(2)}, \nu]a = 0$$
2(d). Frobenius reduction and associated higher dimensional systems of nonlinear PDEs

\[v^{(i)} = \left\{ v^{(i;kl)}, \ k, l = 1, \ldots, n_0 \right\}, \quad w^{(i)} = \left\{ w^{(i;kl)}, \ k, l = 1, \ldots, n_0 \right\}, \]

\[v^{(i;kl)} = \delta_{k1} v^{(i;l)} + \delta_{k(l+n_1(i))} I_M, \]

\[w^{(i;kl)} = \delta_{k1} w^{(i;l)} + \delta_{k(l+n_2(i))} I_M, \]

where \(n_0 \) is an integer parameter, \(v^{(i;l)} \) and \(w^{(i;l)} \) are \(M \times M \) matrix fields, \(\nu, \mu \) and \(a \) have the following diagonal forms:

\[\nu = \text{diag}(\tilde{\nu}, \ldots, \tilde{\nu}) \]
\[\mu = \text{diag}(\tilde{\mu}, \ldots, \tilde{\mu}) \]
\[a = \text{diag}(\tilde{a}, \ldots, \tilde{a}) \]

where \(\tilde{\nu}, \tilde{\mu} \) and \(\tilde{a} \) are \(M \times M \) diagonal matrices.

Block structure of the nonlinear PDEs:

\[E_n^{(mi)} = \left\{ E_n^{(mi;l)} \delta_{k1}, \ k, l = 1, \ldots, n_0 \right\}, \]

\[\tilde{E}_n^{(mi)} = \left\{ \tilde{E}_n^{(mi;l)} \delta_{k1}, \ k, l = 1, \ldots, n_0 \right\}, \ m = 0, 1, \]
Explicit form of the nonlinear PDEs, \(n_1(i) = n_2(i) = 1 \)

\[
E_n^{(11;1)} := v_{i_n}^{(1;1)} + v_{z_n}^{(1;1)}(w^{(1;1)} + v_x^{(1;1)} + v^{(1;1)} + (v_{z_n}^{(1;1)} v^{(1;1)} + v_{z_n}^{(1;1+n_1(0))} \tilde{a}) + w_{z_n}^{(1;1)} v^{(1;1)} + (Q_1^{(1;1)})_{z_n} = 0,
\]

\[
E_n^{(01;1)} := w_{t_n}^{(1;1)} + v_{z_n}^{(1;1)}(w_x^{(1;1)} + v^{(1;1)} \mu + v^{(2;1)} \tilde{a}) + (v_{z_n}^{(1;1)} v^{(1;1)} + v_{z_n}^{(1;1+n_1(0))} \tilde{a}) + w_{z_n}^{(1;1)} w^{(1;1)} + (Q_2^{(1;1)})_{z_n} = 0,
\]

\[
\tilde{E}^{(11;l)} := \tilde{F}^{(11;l)}(v^{(1;1)}, w^{(1;1)}, v^{(1;2)}) + [Q_1^{(1;1)}, \tilde{a}],
\]

\[
\tilde{E}^{(01;l)} := \tilde{F}^{(11;l)}(v^{(1;1)}, w^{(1;1)}, v^{(2;1)}, v^{(1;2)}) + [Q_2^{(1;1)}, \tilde{a}]
\]

where

\[
Q_1^{(1;1)} = v^{(1;3)} \tilde{a} + v^{(1;2)} + v^{(2;1)} \tilde{\nu} + w^{(1;2)} + v^{(2;1)},
\]

\[
Q_2^{(1;l)} = v^{(1;3)} \tilde{a} + v^{(1;2)} \tilde{\mu} + v^{(1;2)} a + w^{(1;2)} + w^{(2;1)}.
\]
The complete system of PDEs for the matrix fields $v^{(1;1)}$, $w^{(2;1)}$, $v^{(2;1)}$, $v^{(1;2)}$:

\[
(E^{(11;1)}_1)_{z_2} - (E^{(11;1)}_2)_{z_1} = 0,
\]

\[
(E^{(01;1)}_1)_{z_2} - (E^{(01;1)}_2)_{z_1} = 0,
\]

\[
[E^{(11;1)}_1, \tilde{a}] - (\tilde{E}^{(11;1)})_{z_1} = 0,
\]

\[
[E^{(01;1)}_1, \tilde{a}] - (\tilde{E}^{(01;1)})_{z_1} = 0.
\]

The scalar case: $u \equiv v^{(1;1)}$

\[
(E^{(11;1)}_1)_{z_2} - (E^{(11;1)}_2)_{z_1} = 0 \iff u_{z_1} t_2 - u_{z_2} t_1 + u_{z_2} u_{z_1} x - u_{z_1} u_{z_2} x = 0.
\]
2(e). Solutions
Starting equation, $M = 1$:

$$\chi \Lambda = W \chi$$

After all reductions, this matrix equation may be splitted into two subsystems of scalar equations:

First subsystem:

$$\Psi^{(l;1m)} \tilde{\Lambda}^{(l;m)} = \sum_{i=1}^{N_0} \sum_{j=1}^{n_0} \left[v^{(i;j)} \Psi^{(l;jm)} + w^{(i;j)} \Psi^{(l;jm)} \right] (\tilde{\Lambda}^{(l;m)})^{-i+1},$$

$$l = 1, \ldots, 2N_0, \ m = 1, \ldots, n_0.$$

This is the system of $2N_0n_0$ linear algebraic equations for the same number of matrix fields $v^{(i;l)}$ and $w^{(i;l)}$, $i = 1, \ldots, N_0$, $j = 1, \ldots, n_0$.

Second subsystem: $n > 1$,

$$\Psi^{(l;nm)} \tilde{\Lambda}^{(l;m)} = \sum_{i=0}^{N_0} \left[\Psi^{(l;(n-n_1(i))m)} + \Psi^{(l;(n-n_2(i))m)} \right] (\tilde{\Lambda}^{(l;m)})^{-i+1},$$

$$\Psi^{(l;ij)} = 0, \text{ if } i \leq 0,$$

$$l = 1, \ldots, 2N_0, \ n, m = 1, \ldots, n_0.$$

This equation expresses recursively the functions $\Psi^{(l;nm)}$, $n > 1$, in terms of the functions $\Psi^{(l;1m)}$ and their x-derivatives.
Functions $\Psi^{(l;nm)}$ and $\tilde{\Lambda}^{(l;m)}$ are defined as follows:

$$
\Psi^{(l;1m)}(\vec{x}) = \sum_{i=1}^{2} \psi^{(lm;i)}(z_1 - \tilde{\Lambda}^{(l;m)} t_1, z_2 - \tilde{\Lambda}^{(l;m)} t_2) e^{k^{(lm;i)} x}
$$

$$
\tilde{\Lambda}^{(l;m)} = E^{(lm)}(z_1 - \tilde{\Lambda}^{(l;m)} t_1, z_2 - \tilde{\Lambda}^{(l;m)} t_2),
$$

$$
k^{(lm;1)} = \frac{1}{2} \left(\tilde{\nu} + \sqrt{\tilde{\nu}^2 + 4a\tilde{\Lambda}^{(l;m)} + 4\tilde{\mu}} \right), \quad k^{(lm;1)} = \frac{1}{2} \left(\tilde{\nu} - \sqrt{\tilde{\nu}^2 + 4a\tilde{\Lambda}^{(l;m)} + 4\tilde{\mu}} \right),
$$

$m = 1, \ldots, n_0, \quad l = 1, \ldots, 2N_0.$
Simplest example of the solution: \(N_0 = n_0 = 1 \)

\[
\Psi^{(l;11)}(\vec{x}) = \sum_{i=1}^{2} \psi^{(l;1)}(z_1 - \tilde{\Lambda}^{(l;1)}t_1, z_2 - \tilde{\Lambda}^{(l;1)}t_2)e^{k^{(l;1)}x}, \; l = 1, 2,
\]

\[
\tilde{\Lambda}^{(l;1)} = E^{(l1)}(z_1 - \tilde{\Lambda}^{(l;1)}t_1, z_2 - \tilde{\Lambda}^{(l;1)}t_2), \; l = 1, 2.
\]

Then

\[
u \equiv v^{(1;1)} = \frac{\Delta_1}{\Delta},
\]

\[
\Delta = \sum_{i,j=1}^{2} \left[(-1)^{i+1}K_1 - (-1)^{j+1}K_2 \right]e^{\left(\tilde{\nu} + (-1)^{i+1}K_1 + (-1)^{j+1}K_2 \right)x}\psi^{(11;1)}(y_1^1, y_1^2)\psi^{(21;1)}(y_2^1, y_2^2),
\]

\[
K_l = \frac{1}{2} \sqrt{\tilde{\nu}^2 + 4\tilde{a}\tilde{\Lambda}^{(l;1)} + 4\tilde{\mu}}, \; y_1^1 = z_1 - \tilde{\Lambda}^{(l;1)}t_1, \; y_2^1 = z_2 - \tilde{\Lambda}^{(l;1)}t_2,
\]

\[
\Delta_1 = (\tilde{\Lambda}^{(1;1)} - \tilde{\Lambda}^{(2;1)}) \sum_{i,j=1}^{2} e^{\left(\tilde{\nu} + (-1)^{i+1}K_1 + (-1)^{j+1}K_2 \right)x}\psi^{(11;1)}(y_1^1, y_1^2)\psi^{(21;1)}(y_2^1, y_2^2)
\]

Solution \(u \) has no singularities if \(\Delta \neq 0: K_1 > K_2 > 0, \; \psi^{(11;2)} < 0, \; \psi^{(11;1)}, \psi^{(21;1)}, \psi^{(21;2)} > 0. \)

Since \(\tilde{\Lambda}^{(l;1)} \) is implicitly given by the eq.(1), constructed function \(u \) describes the break of the wave profile unless \(\tilde{\Lambda}^{(l;1)} = const. \)
For instance:

\[K_2 = 0 \implies \tilde{\Lambda}^{(2;1)} = -\frac{\tilde{\nu}^2 + 4\tilde{\mu}}{4\tilde{a}} = const, \]

\[\psi^{(11;1)}(y_1^1, y_2^1) = \xi_1(y_1^1, y_2^1) > 0, \quad \psi^{(11;2)}(y_1^2, y_2^2) = -\xi_2(y_1^2, y_2^2) < 0. \]

One has

\[u = \frac{(\tilde{\Lambda}^{(1;1)} - \tilde{\Lambda}^{(2;1)}) \left(e^{K_1 x} \xi_1(y_1^1, y_2^1) - e^{-K_1 x} \xi_2(y_1^2, y_2^2) \right)}{K_1 \left(e^{K_1 x} \xi_1(y_1^1, y_2^1) + e^{-K_1 x} \xi_2(y_1^2, y_2^2) \right)}, \]

\[y_1^l = z_1 - \tilde{\Lambda}^{(l;1)} t_1, \quad y_2^l = z_2 - \tilde{\Lambda}^{(l;1)} t_2, \]